

Welcome to Databind’s documentation!

Contents:

	Getting Started
	Library

	Installation

	Creating a Project

	Writing Code

	Building

	Additional Files

	See Examples

	Syntax

	Databind CLI
	What Can Be Compiled

	Using the CLI

	Databind Configuration
	Configuration File

	Example Config

	CLI Arguments

	Macros
	Macros that produce invalid code

	Macros that use Databind code

	Macros that call other macros

	Macros that define functions

	Files for macros

	Global Vars
	Types

	Using Global Vars

	When to use

	Folder Structure

	Examples
	Function Examples

	If/Else Examples

	Objective Examples

	Variable Examples

	While Examples

Getting Started

Get started with Databind.

Library

If you’re looking to use the Databind library in your own Rust project,
then look at the docs hosted on docs.rs [https://docs.rs/databind/].

Installation

Databind is build and installed from source using cargo [https://www.rust-lang.org/tools/install].
With cargo installed, run cargo install databind to get the latest version.
If Rust is in your path, then you should be able to access the CLI by running
databind in any command line.

Built binaries are also available on the GitHub
releases page [https://github.com/MysteryBlokHed/databind/releases].

Creating a Project

To create a new project, use the databind create command.

USAGE:
databind create [OPTIONS] <NAME>

FLAGS:
-h, --help Prints help information
-V, --version Prints version information

OPTIONS:
--description <DESCRIPTION> The pack description [default: A databind pack]
--path <PATH> The path to create the pack in

ARGS:
 <NAME> The name of the project

Example use:

databind create my_project to create a new project in a folder
called my_project.

databind create --description "My first project" my_project
to create a new project with the description My first project.

databind create --path . my_project to create a new project
in the current directory. Only works if empty.

Writing Code

Below is the default main.databind file. .databind files
can only be used to contain function definitions.

func main
 tag load
 tellraw @a "Hello, World!"
end

First, a function named main is defined. The name can be changed, it doesn’t
have to be main. Then, it is tagged with load. This tag is
normal to datapacks and means that a function will run when the datapack is
initially loaded. After that, an ordinary tellraw, and then end
to close the function definition.

When compiled, this will create a file called main.mcfunction that contains
the following:

tellraw @a "Hello, World!"

A load.json file will also be generated in minecraft/tags/functions
to give the function a load tag.

Building

To build your project, run databind in the root directory of your project.
Alternatively, you can run databind <PATH> where <PATH> is the path to
your project.

Additional Files

You are able to create as many .databind files and as many namespaces as
you’d like. You are also able to mix normal .mcfunction files with .databind
files, meaning you don’t have to have a project that only uses Databind. This
is helpful if you want to convert a normal datapack to a Databind project.
Databind files cannot contain anything other than function definitions, so something
such as this alone in a .databind file:

say Hello, World!

Would not generate any output.

See Examples

If you want to see some examples of language features, go to the Examples.
Otherwise, you may continue to the next page.

Syntax

	Syntax

	Notes

	var varName := <int>

	Define a new variable

	obj <objective_name> <objective>

	Define a new scoreboard objective

	sobj <target> <objective> <assignment operator> <int>

	Set the value of an objective for a given target (eg. @a or PlayerName)

	var varName <assignment operator> <int>

	Update the value of an existing variable

	tvar varName

	Used to test variables in if commands (eg. execute if tvar varName matches 1)

	func name

	Define a function. Generates a new mcfunction file

	!def macro($arg1, $arg2)

	Define a macro. See the macros page for more information

	?macro("arg1", "arg2")

	Calls a macro. See the macros page for more information

	!end

	Ends a macro definition. See the macros page
for more information

	!!

	Tells the compiler to directly copy the following text on the line as-is
(eg. !! abcd -> abcd)

	call <function>

	Call a function. Can infer namespace based on directory (see function calling example)

	runif <condition>

	Starts an if statement

	else

	Runs if an if statement’s condition was not true

	while <condition>

	Create a while loop. Condition should be something passable to execute if

	end

	Close a function, while loop, or if statement

	sbop

	Shorthand for scoreboard players operation

	gvar varName

	Can be used with a scoreboard operation as such: sbop gvar var1 += gvar var2

	delvar varName OR delobj objName

	Delete a variable or objective. Can be used interchangeably

	%

	Used to escape keywords (eg. say %call a function -> say call a function)

	Assignment Operators

	+=

	Add to a variable

	-=

	Subtract from a variable

	=

	Set the value of a variable

Databind CLI

What Can Be Compiled

Databind compiles Databind projects (see Creating a Project).
Databind will look for included files (**/*.databind by default) and
leave other files alone.

Note that the namespace inference used for func assumes a proper
file structure (<datapack>/data/<namespace>/functions for functions), but it
does not check if this is the case. A minecraft/tags/functions/ folder may
be generated in an unexpected place if an invalid folder is passed.

Using the CLI

USAGE:
 databind [FLAGS] [OPTIONS] <PROJECT>
 databind [FLAGS] [OPTIONS] <SUBCOMMAND>

FLAGS:
 -h, --help Prints help information
 --ignore-config Ignore the config file. Used for testing
 -V, --version Prints version information

OPTIONS:
 -c, --config <FILE> Configuration for the compiler
 -o, --out <DIRECTORY> The output file or directory [default: out]

ARGS:
 <PROJECT> The Databind project to compile

SUBCOMMANDS:
 create Create a new project
 help Prints this message or the help of the given subcommand(s)

From an Installation

When installed, you can access the CLI by running databind in any command line.
Running databind --help will output the text above.

With cargo run

After building Databind yourself, you can use cargo run to run it. Everything
works almost the exact same. You just need to add two dashes (--) after run
(eg. cargo run -- --help).

Databind Configuration

Configuration File

Databind can be configured via the databind.toml generated
in the project’s root. A config file can also be passed
with the -c or --config option.

This table represents the default values of the options
if no config changes are made.

	Option

	Notes

	
	

	inclusions = ["**/*.databind"]

	Specify what files to compile using globs

	exclusions = []

	Specify what files not to copy over/compile using globs

	output = "out"

	The output file or folder

Example Config

Below is a configuration file with all of the above settings.

inclusions = ["**/*.databind"]
exclusions = []
output = "out"

CLI Arguments

Most options that can be set in the databind.toml file
can also be set using CLI arguments.

Example use:

databind -c config.toml -o ./target ./datapack

Macros

Macros in Databind are advanced functions that allow you to take arguments,
unlike traditional mcfunctions. All arguments must be surrounded
by double quotes ("). Here is a macro that says “Hello” to a name you pass:

!def say_hello($name)
 say Hello, $name!
!end

And here is how it would be called:

?say_hello("World")

The macro call above would become the following when compiled:

say Hello, World!

As you can see, the $name in the body of the macro was replaced
with the "World" string that was passed to it.

Macros that produce invalid code

In some cases, you may want a macro that returns a value not meant to be parsed by Databind directly.
For example, you may want a macro to generate a simple string of text without being attached to a command.
You can use the !! syntax for this:

!def name_text($name)
 !! Hello, $name!
!end

The !! tells the compiler to insert the line as-is into the outputted code.
The macro can now be used in ways such as:

say ?name_text("World")

Note that macro variables (such as ``$name``) will still be replaced.

Macros that use Databind code

Macros are able to use Databind code just like any other place in a
.databind file. Here is a macro that creates a variable with a name
that is passed to it, then announces a message to all players:

!def create_var($name)
 var $name := 5
 tellraw @a "A variable named $name was created."
!end

Macros that call other macros

Macros are also able to call other macros and pass arguments to them.

!def macro_1($name)
 say Hello, $name!
!end

!def macro_2($name)
 # There is a % before 'call' here because 'call' is a Databind keyword
 # See the syntax table for info on escaping keywords
 say I am about to %call macro_1
 ?macro_1("$name")
!end

Keep in mind that macro arguments must be surrounded by double quotes,
which is why macro_2’s call of macro_1 is "$name" instead of
just $name.

Macros that define functions

Since macros can use any Databind code, this also means that they’re able to
define functions. This makes it possible to create macros that set up a series
of functions to avoid copy + pasting code.

!def create_toggle_function($funcname)
 # This appends '_load' to the end of the function name
 func $funcname_load
 tag load
 var $funcname_state := 0
 var $funcname_toggled := 0
 end

 # This appends '_on' to the end of the function name
 func $funcname_on
 say $funcname has been enabled
 var $funcname_state = 1
 end

 # This appends '_off' to the end of the function name
 func $funcname_off
 say $funcname has been disabled
 var $funcname_state = 0
 end

 # This appends '_toggle' to the end of the function name
 func $funcname_toggle
 say Toggling $funcname
 execute if tvar $funcname_state matches 1 run var $funcname_toggled = 1
 execute if tvar $funcname_state matches 1 unless tvar $funcname_toggled matches 0 run call $funcname_off
 execute if tvar $funcname_state matches 0 unless tvar $funcname_toggled matches 1 run call $funcname_on
 var $funcname_toggled = 0
 end
!end

This entire macro creates four functions per call:

	A function that loads when the datapack is loaded ($funcname_load)

	A function that enables something ($funcname_on)

	A function that disables something ($funcname_off)

	A toggle function (calls $funcname_on when disabled and $funcname_off when enabled)

These functions can all be created by running the following line:

?create_toggle_function("my_function")

Of course, creating functions that only say “Enabled” or “Disabled” isn’t
useful in most situations. What would be useful is to be able to pass commands
to run when the function is enabled, disabled, or toggled.

This is entirely possible using macros due to the fact that the arguments
passed can be multiline.

If we change the macro above to look like this:

!def create_toggle_function($funcname, $on_cmds, $off_cmds)
 # This appends '_load' to the end of the function name
 func $funcname_load
 tag load
 var $funcname_state := 0
 var $funcname_toggled := 0
 end

 # This appends '_on' to the end of the function name
 func $funcname_on
 var $funcname_state = 1
 $on_cmds
 end

 # This appends '_off' to the end of the function name
 func $funcname_off
 var $funcname_state = 0
 $off_cmds
 end

 # This appends '_toggle' to the end of the function name
 func $funcname_toggle
 execute if tvar $funcname_state matches 1 run var $funcname_toggled = 1
 execute if tvar $funcname_state matches 1 unless tvar $funcname_toggled matches 0 run call $funcname_off
 execute if tvar $funcname_state matches 0 unless tvar $funcname_toggled matches 1 run call $funcname_on
 var $funcname_toggled = 0
 end
!end

We’re now able to pass commands to run when the function is enabled
and disabled. If we wanted a command that summoned an armor
stand when enabled and killed it when disabled, we could call the
macro like this:

This formatting is not required, it's just to make the code
easier to read
?create_toggle_function(
 "astand",

 "summon armor_stand ~ ~ ~
 say Created armor stand",

 "kill @e[type=armor_stand]
 say Killed armor stand",
)

When compiled to a datapack, if we wanted to run our toggle function
in-game, we could run the following:

/function namespace:astand_toggle

Files for macros

Any file whose name starts with an ! symbol is able to define macros
that work anywhere in the project. These files, if they only contain macros,
should generally be placed right in the src/ directory as opposed to
in a namespace’s functions/ directory, however you can place them wherever
you’d like.

It’s important to note that the reason the ! was chosen is that the compiler
goes through the src/ directory in alphabetical order. This means that if you,
for example, have two namespaces, abc and xyz, macros defined in xyz
will not be available in abc. A good idea is to begin the names of any folders
containing macro definitions with an !, similar to the files. That way, they are
always compiled first.

Macros that contain calls to other macros can be defined in any order. If you have
the following two macros:

!def macro_1()
 say Macro 1
!end

!def macro_2()
 say Macro 2
 ?macro_1()
!end

You don’t have to define macro_1 before macro_2; it’s only important that
they’re both defined before macro_2 is called. A project using macros might
have a file structure similar to this:

project_root
│ databind.toml
└───src
 │ pack.mcmeta
 ├───!macros
 │ !my_macro.databind
 └───data
 └───namespace
 └───functions
 main.databind

Global Vars

You can define global variables with a file called vars.toml in the project root.
Keys and values aren’t put in a section of the .toml, they’re just in the file. For example:

name="World"

This defines a global variable name that can be used in your code.

Types

The TOML format supports datatypes other than just strings, such as
booleans and integers. Types that aren’t strings are converted to
strings. Booleans that are true are turned into 1, and
false ones are turned into 0. Floats like 1.0 are
truncated, but floats with non-zero decimals are left alone.

Using Global Vars

To use a global variable in your code, use an & symbol followed
by the variable name. Like this:

say Hello, &name!

Which, with the vars.toml defined above, becomes:

say Hello, World!

Instances of &varname are directly replaced, meaning that
escaping them with a % symbol doesn’t work. This means that
the following code:

say Hello, %&name!

won’t stop the replacement of &name.

When to use

Global variables are useful to let users more easily configure aspects
of your datapack. This does mean that the project must be recompiled
whenever the configuration is changed, and that users must have Databind
downloaded to use the project. If you are only configuring number values,
eg. an amount of time to wait for something, then it might be easier for
people using your datapack to have a config.mcfunction file somewhere in the
project that sets scoreboard values.

Folder Structure

How the folder structure of Databind works.

In a project started with databind create, the file structure
might look something like this:

project_root
│ databind.toml
│ LICENSE
│ README.md
└──src
 │ pack.mcmeta
 │ pack.png
 └───data
 └───namespace
 └───functions
 main.databind

All of the Databind-related files (other than the configuration file)
are contained in the src/ directory. Other files such as the project’s
license and the README are just in the root. These files are not generated
by default, but they’ve been added in the example to show where they might
be placed.

It’s possible to create a project without using databind create, but it’s
not ideal and bugs caused by it generally won’t be fixed.

Examples

Various examples on how to use Databind and its features.

Contents:

	Function Examples
	Calling

	Simple Function

	If/Else Examples
	Single If Statement

	If/Else

	Nested If Statements

	Objective Examples
	Create Objective

	Deletion

	Scoreboard Operations

	Variable Examples
	Create, Modify & Test

	Deletion

	Scoreboard Operations

	While Examples
	For Loop

	Loop Until False

Function Examples

Examples using functions.

Contents:

	Calling

	Simple Function

Calling

Different ways to call a function.

function command

Built into mcfunctions. Requires a namespace.

example/src/data/example/functions/main.databind

func example_func
say Hello, World!
end

func main
function example:example_func
end

call (infer namespace)

Add namespaces to functions while compiling.
Allows more freedom with directory names.

example/src/data/example/functions/main.databind

func example_func
say Hello, World!
end

func main
call example_func
end

Compiled, call example_func becomes function example:example_func.

call (explicit namespace)

example/src/data/example/functions/main.databind

func example_func
 say Hello, World!
end

func main
 call example:example_func
end

Effectively the same as the function command.

Simple Function

Example

A function that increments a counter and logs when it’s run.

example/src/data/example/functions/main.databind

func load
tag load
 var counter := 0
end

func example
 tellraw @a "Example_function run"
 var counter += 1
end

Compiled

example/out/data/example/functions/load.mcfunction

scoreboard objectives add counter dummy
scoreboard players set --databind counter 0

example/out/data/example/functions/example.mcfunction

tellraw @a "Example_function run"
scoreboard players add --databind counter 1

If/Else Examples

Examples using if/else statements.

If statements use several files, so compiled output is not shown in the examples.

Contents:

	Single If Statement

	If/Else

	Nested If Statements

Single If Statement

A lone if statement.

Example

example/src/data/example/functions/main.databind

func main
tag load
 var test := 1
 runif tvar test matches 1
 say Test is equal to 1
 end
end

If/Else

An if statement with an else block.

Example

example/src/data/example/functions/main.databind

func main
tag load
 var test := 1
 runif tvar test matches 1
 say Test is equal to 1
 else
 say Test is not equal to 1
 end
end

Nested If Statements

Multiple if statements inside of each other.

example/src/data/example/functions/main.databind

func main
tag load
 var i := 0
 var j := 0
 runif tvar i matches 0
 runif tvar j matches 0
 say i is 0 and j is 0
 else
 say i is 0 and j is not
 end
 end
end

Objective Examples

Examples using objectives.

Contents:

	Create Objective

	Deletion

	Scoreboard Operations

Create Objective

Create a scoreboard objective.

Example

Create an objective points and set everyone's score to 100
obj points dummy
sobj @a points = 100

Compiled

scoreboard objectives add points dummy
scoreboard players set @a points 100

Deletion

Example

Define an objective and delete it.

obj objective dummy
delobj objective
or
delvar objective

Compiled

scoreboard objectives add objective dummy
scoreboard objectives remove objective

Scoreboard Operations

Example

Define two objectives and use a scoreboard operation to multiply the first.

obj obj1
obj obj2
sobj @a obj1 = 5
sobj @a obj2 = 2
sbop @a obj1 *= @a obj2

Compiled

scoreboard objectives add obj1 dummy
scoreboard objectives add obj2 dummy
scoreboard players set @a obj1 5
scoreboard players set @a obj2 2
scoreboard players operation @a obj1 *= @a obj2

Variable Examples

Examples using variables.

Contents:

	Create, Modify & Test

	Deletion

	Scoreboard Operations

Create, Modify & Test

Example

Create a variable called example and set it to 2
var example := 2
Add 1 to example
var example += 1
Subtract 2 from example
var example -= 2
Set example to 1
var example = 1
Say something if example is 1
execute if tvar example matches 1 run say Variable example is equal to 1!

Compiled

scoreboard objectives add example dummy
scoreboard players set --databind example 2
scoreboard players add --databind example 1
scoreboard players remove --databind example 2
scoreboard players set --databind example 1
execute if score --databind example matches 1 run say Variable example is equal to 1!

Deletion

Example

Define a variable and delete it.

var variable := 1
delvar variable
or
delobj variable

Compiled

scoreboard objectives add variable dummy
scoreboard players set --databind variable 5
scoreboard objectives remove variable

Scoreboard Operations

Example

Define two variables and use a scoreboard operation to multiply the first.

var variable1 := 5
var variable2 := 2
sbop gvar variable1 *= gvar variable2

Compiled

scoreboard objectives add variable1 dummy
scoreboard players set --databind variable1 5
scoreboard objectives add variable2 dummy
scoreboard players set --databind variable2 2
scoreboard players operation --databind variable1 *= --databind variable2

While Examples

Examples using while loops.

Contents:

	For Loop

	Loop Until False

For Loop

A for loop-like while loop.

Example

example/src/data/example/functions/main.databind

func load
tag load
 var i := 10
 while tvar i matches 1..
 tellraw @a "Variable i is above 0"
 var i -= 1
 end
 tellraw @a "Variable i is at 0"
end

Compiled

When while loops are compiled, functions with random characters
at the end are created. In compiled examples, these characters
will be abcd.

example/out/data/example/functions/load.mcfunction

scoreboard objectives add i dummy
scoreboard players set --databind i 10
function example:while_abcd
tellraw @a "Variable i is at 0"

example/out/data/example/functions/while_abcd.mcfunction

execute if score --databind i matches 1.. run function example:condition_abcd

example/out/data/example/functions/condition_abcd.mcfunction

tellraw @a "Variable i is above 0"
scoreboard objectives remove --databind i 1
function example:loop_abcd

Loop Until False

Use an integer as a boolean to loop until false.

Example

example/src/data/example/functions/main.databind

func load
tag load
 var bool := 1
 while tvar bool matches 1
 tellraw @a "Bool is true"
 end
end

Compiled

When while loops are compiled, functions with random characters
at the end are created. In compiled examples, these characters
will be abcd.

example/out/data/example/functions/load.mcfunction

scoreboard objectives add bool dummy
scoreboard players set --databind bool 1
function example:while_abcd

example/out/data/example/functions/while_abcd.mcfunction

execute if score --databind bool matches 1 run function example:condition_abcd

example/out/data/example/functions/condition_abcd.mcfunction

tellraw @a "Bool is true"
function example:while_abcd

Index

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Databind’s documentation!

 		
 Getting Started

 		
 Library

 		
 Installation

 		
 Creating a Project

 		
 Writing Code

 		
 Building

 		
 Additional Files

 		
 See Examples

 		
 Syntax

 		
 Databind CLI

 		
 What Can Be Compiled

 		
 Using the CLI

 		
 From an Installation

 		
 With cargo run

 		
 Databind Configuration

 		
 Configuration File

 		
 Example Config

 		
 CLI Arguments

 		
 Macros

 		
 Macros that produce invalid code

 		
 Macros that use Databind code

 		
 Macros that call other macros

 		
 Macros that define functions

 		
 Files for macros

 		
 Global Vars

 		
 Types

 		
 Using Global Vars

 		
 When to use

 		
 Folder Structure

 		
 Examples

 		
 Function Examples

 		
 Calling

 		
 Simple Function

 		
 If/Else Examples

 		
 Single If Statement

 		
 If/Else

 		
 Nested If Statements

 		
 Objective Examples

 		
 Create Objective

 		
 Deletion

 		
 Scoreboard Operations

 		
 Variable Examples

 		
 Create, Modify & Test

 		
 Deletion

 		
 Scoreboard Operations

 		
 While Examples

 		
 For Loop

 		
 Loop Until False

